
School Integration Specification
Version 2.0

Last update: March 2025

School Integration Specification

Table of Contents

01 Platform Introduction

02 Single Sign-On (SSO)

04

02 Single Sign-On (SSO) 06

04 Payment Integrations 20

03 Student Information System (SIS) methods and formats

API integration

07

11a

Flat File via SFTP Integration 16b

Authentication 06a

Direct links 06b

18File NamesII

18

18

19

19

Flat files componentsIII

11SummaryI

17AccessI

11

11

12

AuthenticationII

API - Order Request 20a

Automated Voucher Processing 25b

Bookstore Charge Program (BCP) 26c

20Balance InquiryI

21ChargeIII

21HoldII

23RefundIV

25Error CodesVRest

07

09

API ComponentsIII

User information: Field Definitions

Course information: Field Definitions

10

10

Syllabus course data: Field Definitions

Term information: Field Definitions

15

16

Full Request

Partial Request

User file

Course file

Term file

Payment Partners 28d

28CBORDI

School Integration Specification

05 Akademos Data Exports via SFTP 30

06 LMS

Transaction Report

31

30a

28Watchman Payment SystemIII

29TransactCampusIV

29TouchNetV

28Trimdata (FA~link)II

School Integration Specification

Platform Introduction01

Welcome to the Akademos Integrated Bookstore! Integrating your school

systems with the
Akademos platform brings many benefits over the standard

installation, including:

Automated data synchronization requiring less actions from the

administrators

Single Sign-On account management for students, administrators and

faculty

Support for custom payment methods

Expedited and more accurate student shopping experience

The Akademos platform is designed to be as flexible as possible: depending

on your need,
components can be interchanged and left off of a final build,

and the system will scale smoothly.

This flexibility is also found in data methods and formats. In the following

document, we will
describe the interactions between the Akademos API

systems and your School Web Service
(SWS) required to create the optimum

integrated platform.

04

Back to Table of Contents

School Integration Specification

Bookstore Operational Workflow
Student Purchase Process

05

Back to Table of Contents

Single Sign-On (SSO)
SSO provides the ability for Akademos to correctly authorize users and direct

them to the
corresponding location on the bookstore website through use of

credentials they already make
use of.

Depending on your platform capabilities, the bookstore can authenticate

users who
have already signed into the school SIS system without asking for

additional credentialing.

Akademos preferred protocol is SAML 2.0 but we are capable of working with

Shibboleth. Any IdP that can use one of these methods can be connected to

our service.

School Integration Specification

02

Authentication

Direct Links

a

b

Common attributes used for authentication include;

https://[domain].textbookx.com/account/login.php?ticket=institute_[domain]

See section 3, Course structure request and course file field definitions:

course_number and term_code.

To trigger the login and allow students and faculty to access the bookstore

without credentials, you can place the following ulr:

[domain].textbookx.com/classes/{course_number}-{term_code}

To set up the SSO the attribute selected to authenticate users must be the

same value included in the user information request (API) or in the user file (Flat

File) as the ID (see field definitions in section 3). During the integration

Akademos will request test credentials to ensure the SSO is set up correclty.

To take students to a specific course and be able to look for all the

adopted materials made, you can place the following url:

06

Student ID

Username

Email

Back to Table of Contents

https://opsu.textbookx.com/account/login.php?ticket=institute_opsu
http://opsu.textbookx.com/classes/%7Bcrn%7D-%7Bterm_code%7D

School Integration Specification

03 Student Information
System (SIS) methods  
and formats
Akademos is capable of working with a number of data formats and transfer

methods, including
both real-time and flat-file. Note that not all system

components are capable of flat-file
background processing.

Akademos will require three sets of information: user, course and term data.

Please see the description of each field and make sure these are label exactly

as we present them here.

status_code integer - Represents status of request. 0 indicates success. (API)

status_message string - Represents specific information regarding failure. (API)

User information: Field Definitions

Property Name Value Character limit Description

id string varchar (50) The user ID for students, professors or admins.

first_name string varchar (150) The user’s first name.

last_name string varchar (150) The user’s last name.

email string varchar (150) The user’s registered email.

role string enum (‘student’,’professor’) The user type, student, professor, or readonly.

phone_number string varchar (15) The user’s phone number. Only for students.

address_line_1 string varchar (255) The user’s street address. Only for students.

address_line_2 string varchar (255) The user’s street address. Only for students.

Table continues on next page.

07

Back to Table of Contents

Property Name Value Character limit Description

School Integration Specification

student_grade_level string enum('freshman','sophomore','junior','senior','graduat

e','post_graduate','unclassified')

The student grade level that represents a common description of a
student's current

progress within a certificate or degree program.

Specific institutes may differ, but the following guide may be used:t

z Freshman: Student is in the first year of a programt

z Sophomore: Student is in the second year of a programt

z Junior: Student is in the third year of a programt

z Senior: Student is in the fourth year of a programt

z Graduate: Student is a fifth or beyond year of a graduate level program

course_number string varchar (100) In the case of students: all course_numbers where the student is
registered. Leave empty

if the user is not yet registered.

In the case of instructors: all course_numbers where the professor is
assigned to teach.

term_code string varchar (20) Numeric term code. When joined to course_number creates CRN.

term_desc string varchar (150) Term description (e.g. “Fall 2014”, “Summer 2015”, etc.)

credit_amount integer decimal (7,2) The dollar credit amount that is issued to user to be used in the
bookstore.

credit_exp_date date yyyy-mm-dd or mm/dd/yyyy Selected date of when credit amount is expired. Credit value changes to ‘0’ value.

credit_start_date date yyyy-mm-dd or mm/dd/yyyy This field can be blank or you can indicate the exact date you want the credits to be issued.

credit_notify string enum('yes','no') If value is 'Yes' an email notification is sent to user including their credit
 amount and

expiration date.

username string varchar (50) This field can be used to get a parallel identifier of student and professor accounts. This

field can be used to authenticate users through LMS or send information back to school.

special_type string varchar (50) Designate students in a particular program (e.g. EA). Required for Equitable Access clients.

student_type string varchar (255) Identifies student cohorts, such as Dual Enrollment.

state string varchar (100) The user’s state (valid U.S. state required, otherwise leave blank). Only for students.

postal_code string varchar (30) The user’s postal code. Only for students.

student_major string varchar (20) The user's current school major studies.

city string varchar (100) The user’s city. Only for students.

08

Back to Table of Contents

School Integration Specification

Syllabus course data: Field definitions

course_credits integer int(3) Numbers from 1 to 255

course_description string varchar(3000) Text or HTML field up to 3,000 character limit

course_start_time time HHMMSS 12 or 24-hour format

course_end_time time HHMMSS 12 or 24-hour format

course_location integer/string char(64) Alphanumeric (letters and/or numbers)

course_schedule string - Allowed values: Mon, Tue, Wed, Thu, Fri, Sat, Sun

course_type string varchar(255) Allowed values: Traditional, Blended, Online

course_method string vachar(255) Allowed values: ONL, LEC, LAB, CLA, REC

lab_location integer/string char(64) Alphanumeric (letters and/or numbers)

lab_start_time time HHMMSS 12 or 24-hour format

lab_end_time time HHMMSS 12 or 24-hour format

prerequisite integer/string - Alphanumeric (letters and/or numbers), comma separated values allowed

corequisite integer/string - Alphanumeric (letters and/or numbers), comma separated values allowed.

Property Name DescriptionValue Character limit

10

Back to Table of Contents

Term information: Field Definitions

DescriptionCharacter limit

status_code integer - Represents status of request. 0 indicates success

status_message string - Represents specific information regarding failure.

term_code string varchar (20) Unique term code

start_date date yyyy-mm-dd or mm/dd/yyyy Start date of term. Format: Y-m-d

end_date date yyyy-mm-dd or mm/dd/yyyy End date of term. Format: Y-m-d

Property Name Value

School Integration Specification

Course information: Field Definitions

status_code integer - Represents status of request. 0 indicates success (API).

status_message string - Represents specific information regarding failure (API).

course_number string varchar (100) Unique per term. When joined to term_code creates CRN.

course_title string varchar (100) Title of course (e.g. “Introduction to Accounting”).

course_name string varchar (60) Abbreviated name of course (e.g. “ACCT”).

course_code string varchar (60) Course code. (e.g. “200” as in ACCT 200).

course_section string varchar (60) Course section (e.g. “1A” as in ACCT 200 1A).

course_credits integer int (3) Course credits (e.g. 3) Required for Equitable Access clients.

course_model string varchar (60) Designate courses in a particular program (e.g. EA). Required for Equitable Access clients.

department_code string varchar (20) Department code (not visible to students).

department_desc string varchar (150) Department description (e.g. “English”, “Political Science”).

campus_code string varchar (20) Section campus code (not visible to students).

term_code string varchar (20) Numeric term code. When joined to course_number creates
CRN.

term_desc string varchar (150) Term description (e.g. “Fall 2023”, “Summer 2023”, etc.)

session_code string varchar (64) Session code.

start_date date yyyy-mm-dd or mm/dd/yyyy Date the course begins (YYYYMMDD).

end_date date yyyy-mm-dd or mm/dd/yyyy Date the course ends (YYYYMMDD).

enrollment_cap string int (4) Maximum number of students who may be enrolled in the
course.

campus_desc string varchar (150) Section campus description (e.g. “Lansing”, “Central Campus”,
etc. --- exclude

campus_code and desc if only one campus.

Property Name Value Character limit Description

09

Back to Table of Contents

School Integration Specification

Resource format:

JSON (application/json; charset=UTF-8)

XML (application/xml; charset=UTF-8)

The Akademos REST client supports multiple resource formats and schemes

of data transfer
between Akademos and the SWS API server.

Rest

SummaryI

a API integration

Data transfer schemes:

Resource as RAW body (Akademos POST requests or SWS response).

In this case Request Authentication Code signature_method and

signature_code should be passed
as HTTP headers. Resources should be

passed in body as RAW JSON/XML data
without any encoding.

Same as the previous item, but Akademos REST client could send

signature_method and
 signature_code in URI instead of headers.

The Akademos REST client supports the following authentication method:

AuthenticationII

HTTPS + Static authentication key in HTTP header

11

Back to Table of Contents

Rest

The Akademos REST client supports HMAC-SHA256 or HMAC-SHA1 for

signature code generation.

Getting a signing key

Akademos software development team will provide a signing key for HMAC.

Required data

When using this feature, additional data should be present in every SWS API

response and
Akademos REST client request. Depending of data transfer

schemes it could be HTTP header
or URI parameter.

signature_method HMAC-SHA256

signature_code 6829e274cb147760dc5db4b5c0248699d939c7b8

Creating the signature base string

The REST URI and raw request/response body must be joined to make a single

string, from
which the signature will be generated.

Convert the HTTP Method to uppercase and set the output string equal to

this value.

Append the '&' character to the output string.

Append REST method URI to the output string.

Append the '&' character to the output string. Skip this step if resource

body is empty.

School Integration Specification

Append response resource body string and append it to the output string.

Skip this step if
resource body is empty.

Example of SWS balance response signature base string:

GET& balance

{number}

{integer}

{string}

/ / &12345 <?xml version="1.0" encoding="UTF-8" ?><response>

<balance> </balance>

<status_code> </status_code>

<status_message> </status_message>

</response>

HTTP Request

Terms Request

Contains data regarding active or upcoming terms.

All fields are required.

GET /terms

API ComponentsIII

Request Body

Do not supply a request body with this
method.

12

Back to Table of Contents

Resource Representation (JSON)

“status_code”

“status_message”

“terms”

"term_code"

“start_date”

 "end_date"

: ,

: ,

: [

 {

 : ,

 : ,

 :

 }

]

{integer}

 {string}

{string}

{date}

{date}

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <status_code> </status_code>

<status_message> </status_message>

<terms>

 <term>

 <term_code> </term_code>

 <start_date> </start_date>

 <end_date> </end_date>

 </term>

 </terms>

</response>

{integer}

 {string}

{string}

{date}

{date}

Course Structure Request

Akademos is capable of working with a number of data formats and transfer

methods, including
both real-time and flat-file. Note that not all system

com

https://docs.google.com/document/u/1/d/18Z_koByhPIhiQJdBE7n6VN5VZMWjiWlOvn7AUL9uANA/edit#bookmark=kix.n49go2hkt936

School Integration Specification

components are capable of flat-file
background processing.

All fields are required.

Resource Representation (JSON)

“status_code”

“status_message”

“courses”

 "course_number"

 “course_title”

 "course_name"

"course_code"

"course_section"

"course_credits"

"course_model"

"department_code"

 “department_desc”

“campus_code”

“campus_desc”:

 "term_code"

“term_desc”

 "session_code"

 "start_date"

"end_date"

"enrollment_cap"

: ,

: ,

: [

 {

 : ,

 : ,

: ,

 : ,

 : ,

 : ,

 :
,

 : ,

 : ,

 : ,

 ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :

 }

]

 {integer}

{string}

 {string}

{string}

 {string}

 {string}

 {string}

 {integer}

 {string}

 {string}

 {string}

 {string}

{string}

{string}

 {string}

{string}

{date}

 {date}

{integer}

HTTP Request

GET /structure

13

Back to Table of Contents

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <status_code> </status_code>

 <status_message> </status_message>

 <courses>

 <course>

 <course_number> </course_number>

 <course_title> </course_title>

 <course_name> </course_name>

 <course_code> </course_code>

 <course_section> </course_section>

 <course_credits> </course_credits>

 <course_model> </course_model>

 <department_code> </department_code>

 <department_desc> </department_desc>

 <campus_code> </campus_code>

 <campus_desc> </campus_desc>

 <term_code> </term_code>

 <term_desc> </term_desc>

 <session_code> </session_code>

 <start_date> </start_date>

 <end_date> </end_date>

 <enrollment_cap> </enrollment_cap>

 </course>

 </courses>

</response>

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{integer}

{string}

{string}

{string}

{string}

{string}

{integer}

{string}

{string}

{date}

{date}

{integer}

Course Navigation Structure Usage

For the course navigation structure you can choose a three department level

or a two department level structure. The fields that will determine one of these

School Integration Specification

two structure are the campus_code and campus_desc. If you decide to have

a three department level you must include the campus_code and

campus_desc information. If you decide to have a two department level you

must leave empty the campus_code and campus_desc fields.

1

1 32

2

3 levels:

1. Term (here you will see the term_desc)

2. Campus description (here you will see the campus_desc. It doesn’t has

to be the campus sub level, you can use this field to identify subterms, or

different programs at your institution)

3. Department description (here you will see the department_desc)

Course title (here you will see the course_title)

14

Back to Table of Contents

1 3

2

2 levels:

1.Term (here you will see the term_desc)

2. Department description (here you will see the department_desc)

Course title (here you will see the course_title)

1 2

School Integration Specification

Request Body

Do not supply a request body with this
method.

Contains data for both students and instructors. In the case of students an

array of courses
associates the student user with his or her active enrollments;

in the case of instructors the
array specifies courses the user teaches. User

address data allows us to pre-populate required
 checkout fields in the case

of students, and to tie in advanced adoption functionality (reminders,
etc) in

the case of instructors. Note that for instructors, physical address fields can

be filled in
with a fixed school address or left empty.

Full requests are typically made once per night, and partial requests are made

upon successful
authentication of the student into the system. Partial

requests can only be served through a
real-time method. The partial request is

not mandatory, however it allows students to see their
most up-to-date

enrollment data. This is especially useful if students wish to add a course and

immediately log into the bookstore to view the relevant booklist.

All fields are required.

User Information Request

Full Request

HTTP Request

GET /courses

15

+

Back to Table of Contents

Resource Representation (JSON)

“status_code”

“status_message”

“users”

“id”

“username”

“role”

“first_name”

“last_name”

“email”

“phone_number”

“address_line_1”

“address_line_2”

“city”

“state”

“postal_code”

“student_major”

“student_grade_level”

“courses”

“course_number”

 “term_code”

“term_desc”

 “special_type”

“student_type”

: ,

: ,

: [

{

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: [{

 : ,

 : ,

 : ,

:

:

}]

}

]

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

 {string}

{string}

 {string}

School Integration Specification

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <status_code> </status_code>

 <status_message> </status_message>

 <users>

 <user>

 <id> </id>

 <username> </username>

 <role> </role>

 <first_name> </first_name>

 <last_name> </last_name>

 <email> </email>

 <phone_number> </phone_number>

 <address_line_1> </address_line_1>

 <address_line_2> </address_line_2>

 <city> </city>

 <state> </state>

 <postal_code> </postal_code>

 <student_major> </student_major>

 <student_grade_level> </student_grade_level>

 <courses>

 <course>

 <course_number> </course_number>

 <term_code> </term_code>

 <term_desc> </term_desc>

 <special_type> </special_type>

 <student_type> </student_type>

 </course>

</courses>

 </user>

</users>

</response>

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

 ...

...

16

Back to Table of Contents

Partial Request+

“status_code”

“status_message”

“user”

“id”

 “username”

“role”

“first_name”

“last_name”

“email”

“phone_number”

 “address_line_1”

“address_line_2”

“city”

“state”

“postal_code”

“student_major”

“student_grade_level”

“courses”

"course_number"

"term_code"

“term_desc”

“special_type”

“student_type”

: ,

: ,

: {

 : ,

: ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : [{

 : ,

 : ,

 : ,

:

:

 }]

}

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

 {string}

 {string}

Resource Representation (JSON)

HTTP Request

GET/ courses?role={user_id}/ {user_role}

Role values: student, professor

School Integration Specification

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <status_code> </status_code>

 <status_message> </status_message>

 <user>

 <id> </id>

 <username> </username>

 <role> </role>

 <first_name> </first_name>

 <last_name> </last_name>

 <email> </email>

 <phone_number> </phone_number>

 <address_line_1> </address_line_1>

 <address_line_2> </address_line_2>

 <city> </city>

 <state> </state>

 <postal_code> </postal_code>

 <student_major> </student_major>

 <student_grade_level> </student_grade_level>

 <courses>

 <course>

 <course_number> </course_number>

 <term_code> </term_code>

 <term_desc> </term_desc>

 <special_type> </special_type>

 <student_type> </student_type>

 </course>

 </courses>

 </user>

</response>

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

 ...

Request Body

Do not supply a request body with this
method.

17

Back to Table of Contents

To access the SFTP Akademos will provide an username and password to the

corresponding IT contact at your institution. Akademos also support a public

key authentication access. To set up the public key you can contact

akademos.integrations@vitalsource.com and send your public key and our IT

team will install it.

To set up the SFTP please use the following information:

b Flat file via SFTP integration

AccessI

Akademos will create two directories: TEST and PROD, each directory will have

an user, course and term folders . To start with the integration and make sure

that the data structure is consistent your institution IT team will have to upload

the files in the TEST directory. Once Akademos completes the integration

development, we will request your IT team to start uploading the files to the

PROD directory.

Server: ftp.akademos.com

SFTP Port = 2122

FTPS: To use FTPS, you have to use a

compatible client that supports TLS and

use FTP port 21.

mailto:Akademos.integrations@vitalsource.com

School Integration Specification

File namesII

user_YYYYMMDDHHMMSS

course_YYYYMMDDHHMMSS

term_YYYYMMDDHHMMSS

To ensure the data will be updated, Akademos recommends to upload at least

one set of files per day. Akademos will schedule a synchronization process at a

time of your institution convenience.

Akademos can support different file formats such as csv, xml and json.

18

Back to Table of Contents

Flat files componentsIII

id role first_name last_name email phone_number address_line1 city state postal_code student_major student_grade_level

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civil Engineering Graduate

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civil Engineering Graduate

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civil Engineering Graduate

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civil Engineering Graduate

P24356 professor P2First S2Last professor2@asdgdskd.edu

P24356 professor P2First S2Last

User file

id role first_name last_name email phone_number address_

line1

city state postal_

code

student_

major

student_

grade_level

course_

number

term_code term_desc username special_

type

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civ. Eng. Graduate 1605 2023FA Fall 2023 username1 EA

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civ. Eng. Graduate 1709 2023FA Fall 2023 username1 EA

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civ. Eng. Graduate 1908 2023FA Fall 2023 username1 EA

S01010 student S1First S1Last student1@akd.edu 5559871234 147 Any St Metropolis KS 66002 Civ. Eng. Graduate 1019 2023FA Fall 2023 username1 EA

P24356 professor P2First S2Last professor2@akd.edu 1605 2023FA Fall 2023 username2

P24356 professor P2First S2Last professor2@akd.edu 1092 2023FA Fall 2023 username2

School Integration Specification

course_

number

course_title course_

name

course_

code

course_

section

course_

credits

course_

model

department_

code

department_desc campus_

code

campus_desc term_code term_desc session_

code

start_date end_date enrollment_

cap

1605 ADV ST: NYC EXPER

PERFORMANCE

THTR 465 1 3 EA THTR THEATRE-ARTS WC West Campus 2023FA Fall 2023 8W 8/26/2023 12/15/2023 6

1908 GEN PSYCH;SOC &

CLIN PROCESSE

PSYCH 101 OL01 3 EA PSYCH PSYCHOLOGY WC West Campus 2023FA Fall 2023 8W 8/26/2023 12/15/2023 5

1019 MANAGEMENT BUS 200 OL01 3 EA BUS BUSINESS EC East Campus 2023FA Fall 2023 16W 8/26/2023 12/15/2023 12

1020 ADVERTISING I COMM 232 OL01 4 COMM COMMUNICATION

-ARTS

EC East Campus 2023FA Fall 2023 16W 8/26/2023 12/15/2023 20

Course file

term_code start_date end_date

2023SP 1/9/2023 5/7/2023

2023SU 5/20/2023 8/15/2023

2023FA 8/26/2023 12/15/2023

Term file

19

Back to Table of Contents

School Integration Specification

The order request API set allows the bookstore to initiate financial transactions

with your aid,
bursar or other debiting account system. This option will allow

students to make their purchases
with the financial instrument they may prefer

to utilize. Orders may be split between order
request methods and traditional,

private methods such as student credit card.

Akademos and the institution developers will need to agree upon security

protocols (basic authentication protocols, signatures) before providing the

initial end points. Akademos will require the staging API endpoints for the

testing phase and once everything has been validated Akademos will request

the production API endpoints before release.

API - Order Requesta

04 Payment Integrations

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <balance> </balance>

 <status_code> </status_code>

 <status_message> </status_message>

</response>

{number}

{integer}

{string}

balance number The user’s current account balance.

status_code integer Represents status of request. 0 indicates success

status_message string Represents specific information regarding failure

Field Definitions

Property Name Value Description

A method which returns the authenticated user’s current available funds.

Balance Inquiry

HTTP Request

GET / /balance{user_id}

I Request Body

Do not supply a request body with this
method.

Resource Representation (JSON)

{

 : ,

 : ,

 :

}

 “balance”

“status_code”

“status_message”

{number}

{integer}

{string}

20

Back to Table of Contents

School Integration Specification

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <id> </id>

 <status_code> </status_code>

 <status_message> </status_message>

</response>

{string}

{integer}

{string}

HTTP Request

POST / /hold{user_id}

Resource Representation (JSON)

{

:

:

}

: {string},

 {integer},

 {string}

 “id”

 “status_code”

 “status_message”

Request Body (JSON)

{

 :

}

“amount” {number}

Request Body (XML)

<?xml version="1.0" encoding="UTF-8"?>

</amount>

</request>

<request>

 <amount>{number}

id string Identifier for this hold request.

status_code integer Represents status of request. 0 indicates success. 5

indicates
insufficient funds.

status_message string Represents specific information regarding failure.

Field Definitions

Property Name Value Description
Initially when a student submits their order, the Hold request should reserve

the funds from the
student’s account for at least 14 days, at which time the

hold can be reversed back to the
student’s account automatically. Holds will

be converted to charges (made permanent) when
the items are confirmed as

shipping, in the Charge request. Hold requests are typically done
immediately

following a Balance Inquiry, to avoid declining balance failures.

ChargeIII

The bookstore will initiate a Charge on previously-submitted Holds, which

indicates that the
order is being shipped and the reserved funds can be

committed in the school’s transaction
system.

Charges are made once per order, and will never be more than the original

Hold, although they
may be less depending on the state of the items within the

HoldII

21

Back to Table of Contents

School Integration Specification

Resource Representation (JSON)

{

 : { },

 : { },

 : { }

}

“id”

“status_code”

“status_message”

string

integer

string

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <id> </id>

 <status_code> </status_code>

 <status_message> </status_message>

</response>

{string}

{integer}

{string}

Request Body (JSON)

{

 : ,

 : ,

 : ,

 :

 : ,

 : ,

 : ,

 :

}

“hold_id”

 “aka_order_id”

 “amount”

 “order_items”

 “aka_item_id”

 “title”

 “quantity”

 “amount”

{integer}

 {integer}

 {number}

[

 {

{integer}

 {string}

{integer}

 {number}

 }

]

id string Identifier for this hold request.

status_code integer Represents status of request. 0 indicates success. 5

indicates
insufficient funds.

status_message string Represents specific information regarding failure.

Field Definitions

Property Name Value Description

HTTP Request

POST / /payment{user_id}

order. Any amount between the
original Hold and the subsequent Charge

should be reversed back to the student’s account.

Should an order be cancelled entirely, the Bookstore will send a Charge of “0”

to indicate that
the entire Hold amount should be reversed to the student’s

account.

22

Back to Table of Contents

School Integration Specification

hold_id string Identifier of the previous hold request.

aka_order_id integer Akademos Order ID (one per order)

order_items array Contains the following rows:

amount number Requested payment amount. This must be less than or

equal to* the
amount request in the hold.

Field Definitions

Property Name Value Description

POST / /refund{user_id}

IV Refund

Refunds are issued in order to credit student accounts based on successful

Charge requests.
These may be done to accommodate customer returns or

failed shipments. An order may be
subject to more than one Refund request,

however aggregate refund amounts will never exceed
the original Charge

amount.

HTTP Request

Request Body (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<request>

 <hold_id>{ </hold_id>

 <aka_order_id> </aka_order_id>

 <amount> </amount>

 <order_items>

 <item>

 <aka_item_id> </aka_item_id>

 <title> </title>

 <quantity> </quantity>

 <amount> </amount>

 </item>

 </order_items>

</request>

integer}

{integer}

{number}

{integer}

{string}

{integer}

{number}

crn integer A combination of course_number and term_code to

specify a unique
course (Optional).***

Property Name Value Description

title string The title of the item being purchased.

quantity integer The quantity confirmed as shipping to the customer.

amount number The unit price of the item being purchased.**

term string Specific term_code related to the crn (Optional).***

* Payment request amount MAY BE LESS than Hold Amount due to canceled items. School

should
automatically retire the difference between Hold Amount and Payment Request

Amount (Akademos will
charge each order only once).

** order_items[amount] is on a unit basis, so order_items[amount] * order_items[quantity] =

total price per
item. Note that the sum of these subtotaled amounts from item array MAY BE

MORE than payment
request amount -- this is due to secondary payments like credit cards not

being charged to the school’s
transaction system.

*** crn and term are optional fields, available for inclusion as per your institution's specific

requirements.

23

aka_item_id integer Specifies a product in the bookstore system. Will be

“0” when
identifying shipping cost.

Back to Table of Contents

School Integration Specification

id string Identifier for this transaction.

status_code integer Represents status of request. 0 indicates success.

status_message string Represents specific information regarding failure.

Field Definitions

Property Name Value Description

payment_id string Identifier from the payment request.

amount number Requested refund amount.*

refund_items array Array of items returned.**

Field Definitions

Property Name Value Description

* Refund amounts will be expressed in positive numbers

** Note that refunds can be non-item specific, or can be for items but not for the full charge

amount.
Akademos recommends either leaving off the refund_items array entirely to avoid

{

: ,

: ,

:

}

“id”

“status_code”

“status_message”

 {string}

{integer}

{string}

Resource Representation (JSON)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <id> </id>

 <status_code> </status_code>

 <status_message> </status_message>

</response>

{string}

{integer}

{string}

Resource Representation (XML)

{

 : ,

 : ,

 : [

 { : }

 }]

}

“payment_id”

“amount”

“refund_items”

“aka_item_id”

{string}

{number}

{integer}

Request Body (JSON)

<?xml version="1.0" encoding="UTF-8" ?>

<request>

 <payment_id> </payment_id>

 <amount> </amount>

 <refund_items>

 <aka_item_id> </aka_item_id>

 </refund_items>

</request>

{string}

{number}

{integer}

Request Body (XML)

24

Back to Table of Contents

School Integration Specification

confusion, or indicating
only the book and not using that information to predict or display

refund amount in school system.

Error CodesV

25

General Codes

code: 0

message: success

code: 2

message: user data not found

code: 3

message: user not found

code: 4

message: transaction failed

code: 5

message: insufficient funds

Automated Voucher Processingb

Once the vouchers are issued student’s will receive a notification email with a

code, balance and expiration information.

Akademos is also capable of setting up specific restriction for the usage of

these vouchers.

With this option your institution can create an automated process by setting

up a script to upload a template file to Akademo’s SFTP.

This method is recommended if your institution has a large population that will

received the credits.

code: 1

message: unauthorized

vendor_ID Leave blank unless you have been given a Vendor ID.

voucher_number This is a 7 digit alphanumeric code that you create. It’s a best

practice to come up with a standard convention for these. We

recommend adding the school or program initials for the 1st few

digits, then add any numbers/letters that identify the student, and

then a term identifier. For example: FA1234F22 might be FA (financial

aid) for student ID 1234 for the Fall 22 term. For example: FA1234F22

might be FA (financial aid) for student ID 1234 for the Fall 22 term.

expiration_date Add a date for when you would like this voucher to expire. We

suggest one or two weeks after the first day of class.

email_address An email will be sent to the email entered in this field, with

instructions on how to use the voucher. If you use the same email

address that is in our system (tied to the SIS system) the funds will

automatically appear in the student’s bookstore account.

Student ID The student ID provided in the user data set.

tax_exempt Not subject to taxation.

your_initials The initials of the person making the voucher.

student_name The student’s real name.

Property Name Description

dollar_amount The total amount for the textbook & shipping or Financial Aid

amount. No $ sign needed.

Field definitionsHold Codes

Payment Codes

code: 10

message: funds not available

code: 20

message: corresponding hold

transaction not found

code: 21

message: hold amount does not

match payment amount

Back to Table of Contents

School Integration Specification

Bookstore Charge Program (BCP)c

With this solution student’s can be assigned a credit amount. To create

these credits you can add four extra fields to the user information request if

you are transmitting your data through an API or the user file if you are using

the flat file method.

Field definitions

credit_start_date date This field can be left blank or you can indicate the exact

date you want the credits to be issued.

credit_amount integer The dollar credit amount that is issued to users to be

used in the
bookstore.

Property Name Value Description

credit_exp_date date Selected date of when credit amount is expired.

Credit value changes

to ‘0’ value.

credit_notify string Values: ‘yes’ or ‘no’. If value is 'Yes' an email notification

is sent to user including their credit
 amount and

expiration date.

26

Voucher template

AK Franklin Smith 2123411402 100 fsmith@school.com yes 11-01-2023 12345 1

AK Amanda Jones 7902913123 150 ajones@school.edu yes 11-01-2023 12346 1

AK Doug Wheatly 1981413432 250 dwheatly@school.edu yes 08-15-2023 12347 1

AK Karen Watts 1311235134 500 kwatts@schooledu yes 08-15-2023 12348 0

AK Arnold Douglas 1231613454 700 adouglas@school.edu yes 08-15-2023 12349 0

Your Initials Studen’s Name Voucher Number Dollar Amount Student’s Email Address Notify Student Expiration Date Student ID tax_exempt

How it works?

Akademos will issue this balance only once per term. You will need to update

the expiration date for every term. For example if you add a balance of $500

with 'credit_start_date' of 10/26/23 and 'credit_exp_date' of 1/26/2024 for

Fall 2023, we will issue the $500 only once even if the students is enrolled in

more than one course. As this file will be sent every day, we have a logic that

won't allow additional amounts to be added more than once.

If only some specific students will receive the book vouchers you'll need to

add the 'credit_amount', 'credit_exp_date', 'credit_notify', 'credit_start_date'

data only for those students. This means that for the students that won't receive

the book vouchers you may leave the fields mentioned blanks/empty.

Back to Table of Contents

School Integration Specification

27

Resource Representation (XML)

<?xml version="1.0" encoding="UTF-8" ?>

<response>

 <status_code> </status_code>

 <status_message> </status_message>

 <users>

 <user>

 <id> </id>

 <username> </username>

 <role> </role>

 <first_name> </first_name>

 <last_name> </last_name>

 <email> </email>

 <phone> </phone>

 <address_line_1> </address_line_1>

 <address_line_2> </address_line_2>

 <city> </city>

 <state> </state>

 <postal_code> </postal_code>

 <student_major> </student_major>

 <student_grade_level> </student_grade_level>

 <courses>

 <course>

 <course_number> </course_number>

 <term_code> </term_code>

 <term_desc> </term_desc>

 <special_type> </special_type>

 </course>

 </courses>

 <credits>

 <credit>

 <term_code> </term_code>

 <credit_amount> </credit_amount>

 <credit_exp_date> </credit_exp_date>

{integer}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{integer}

{date}

User information request with additional credit block

Resource Representation (JSON)

“status_code”

“status_message”

“user”

 “id”

“username”

“role”

“first_name”

“last_name”

“email”

“phone”

 “address_line_1”

“address_line_2”

“city”

“state”

“postal_code”

“student_major”

“student_grade_level”

“courses”

"course_number"

"term_code"

“term_desc”

 “special_type”

 “credits”

"term_code"

“credit_amount”

“credit_exp_date”

 “credit_start_date”

“credit_notify”

: {integer},

: {string}
,

: {

 : {string}
,

 : {string}
,

 : {string}
,

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

{string}

: {string}
,

{string}

{integer}

 {date}

{date}

{string}

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : [{

 : ,

 : ,

 :

 }]

: [{

 : ,

 :

:

:

 :

}]

 }

Back to Table of Contents

School Integration Specification

28

Payment Partnersd

Akademos has existing integrations with several payment partners to allow

students to use their financial aid, scholarships or school funds in the bookstore.

For all of the following integrations during development, Akademos requires a

test user (only student ID) with a balance greater than $0. The student ID must

be the same ID provided in the user data. If it’s an ID different from what is

provided in the user data, the ID must be included in the username field within

the user data.

I CBORD

CBORD is a cloud-based campus card solution.

To proceed with the integration your institution must set up the Odyssey server

and provide to Akademos the following information:

Server IP

Port

Sequence_limit

Code_map

Location

Operator

Media_entry

II Trimdata (FA ~link)

Trimdata is an API solution.

To proceed with the integration Akademos will need the following information:

 <credit_notify> </credit_notify>

 <credit_start_date> </credit_start_date>

 <credit>

 ...

 </credits>

 </user>

</users>

...

</response>

{string}

{date}

III Watchman Payment System

To proceed with the integration more details will be shared on a technical

discovery call.

Store ID (store number)

AR codes

Register numbers

Back to Table of Contents

School Integration Specification

VTouchNet

VI TransactCampus

TouchNet is an API solution.

To proceed with the integration Akademos will need the following information:

OperatorID

PIN (operator password)

TerminalID

TerminalType

29

To proceed with the integration more details will be shared on a technical

discovery call.

Back to Table of Contents

School Integration Specification

05 Akademos Data
Exports via SFTP
a Transaction report

When using one of the payment integration solutions such as the Voucher

tool/ upload or BCP or if your institution is using Inclusive Access (IA),

Akademos can generate a daily report to reflect all the transactions made by

the students. This report can be placed in the SFTP under the voucher_return

directory or can be sent to a specific email at your institution. The file format

can be a csv or a txt file.

Akademos can provide a default sample file, however, the report can be

customized upon your institution requirements.

Field definitions

Transaction Date The date when the charge or refund was made.

Voucher Code Unique identifier.

Charge Amount If it shows as a positive value it represents the charge amount. If it’s

a negative value it represents a refund.

Vendor ID 4-digit institute ID or voucher agency ID (provided by Akademos).

Property Name Description

Full Name Student’s first and last name that comes from the user file.

Account ID It can be the same value sent as ID or username in the user file.

12/14/23 Student1 799007432 799007432-FM22 483.9 2542

12/14/23 Student2 799007433 799007433-FM23 483.9 2542

12/14/23 Student3 799007434 799007434-FM24 -483.9 2542

Transaction

Date
Full Name Account ID Voucher Code Amount Vendor ID

30

Transaction report template

Back to Table of Contents

School Integration Specification

06 LMS

31

Depending on the LMS your institution uses, Akademos will provide an specific

installation guide for your LMS platform.

We have solutions for all major LMS including LTI tools for:

Canvas

Moodle

Brightspace (D2L)

Blackboard

Back to Table of Contents

This document is confidential and its contents are considered proprietary to the interests of

VitalSource Technologies LLC. All contents Copyright ©
2025, VitalSource Technologies LLC All

rights reserved. VitalSource Technologies LLC owns the copyright for this document.

No part of this document may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including
photocopying, for any purpose, without the express written

permission of VitalSource Technologies LLC.

Confidential Document

Need help? Contact us

 Technical Support

akademos.integrations@vitalsource.com

 Brett Horton

Sr. Product Manager

203-852-3938

brett.horton@vitalsource.com

mailto:Akademos.integrations@vitalsource.com
mailto:brett.horton@vitalsource.com

